p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.20D4, C2.D8⋊9C2, C4.Q8⋊12C2, Q8⋊C4⋊8C2, (C2×C4).107D4, C22⋊C8.5C2, C22⋊Q8.7C2, C2.16(C4○D8), C4.34(C4○D4), C4⋊C4.68C22, (C2×C8).40C22, (C2×C4).110C23, C42⋊C2.9C2, C22.106(C2×D4), (C2×Q8).19C22, C2.19(C8.C22), (C22×C4).56C22, C2.16(C22.D4), SmallGroup(64,166)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C4⋊C4 — C42⋊C2 — C23.20D4 |
Generators and relations for C23.20D4
G = < a,b,c,d,e | a2=b2=c2=1, d4=e2=c, dad-1=ab=ba, ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd3 >
Character table of C23.20D4
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√2 | √2 | -√-2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√2 | √2 | √-2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √2 | -√2 | √-2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √2 | -√2 | -√-2 | complex lifted from C4○D8 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(2 28)(4 30)(6 32)(8 26)(9 18)(10 14)(11 20)(12 16)(13 22)(15 24)(17 21)(19 23)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 22 5 18)(2 12 6 16)(3 20 7 24)(4 10 8 14)(9 31 13 27)(11 29 15 25)(17 32 21 28)(19 30 23 26)
G:=sub<Sym(32)| (2,28)(4,30)(6,32)(8,26)(9,18)(10,14)(11,20)(12,16)(13,22)(15,24)(17,21)(19,23), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,22,5,18)(2,12,6,16)(3,20,7,24)(4,10,8,14)(9,31,13,27)(11,29,15,25)(17,32,21,28)(19,30,23,26)>;
G:=Group( (2,28)(4,30)(6,32)(8,26)(9,18)(10,14)(11,20)(12,16)(13,22)(15,24)(17,21)(19,23), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,22,5,18)(2,12,6,16)(3,20,7,24)(4,10,8,14)(9,31,13,27)(11,29,15,25)(17,32,21,28)(19,30,23,26) );
G=PermutationGroup([[(2,28),(4,30),(6,32),(8,26),(9,18),(10,14),(11,20),(12,16),(13,22),(15,24),(17,21),(19,23)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,22,5,18),(2,12,6,16),(3,20,7,24),(4,10,8,14),(9,31,13,27),(11,29,15,25),(17,32,21,28),(19,30,23,26)]])
C23.20D4 is a maximal subgroup of
C24.115D4 C24.116D4 C24.118D4 (C2×D4).302D4 (C2×D4).303D4 (C2×D4).304D4 C42.229D4 C42.234D4 C24.123D4 C24.124D4 C24.129D4 C24.130D4 C4.2+ 1+4 C4.152+ 1+4 C4.162+ 1+4 C4.172+ 1+4 C42.289D4 C42.292D4
C4⋊C4.D2p: C42.352C23 C42.355C23 C42.357C23 C42.361C23 C42.424C23 C42.425C23 C42.426C23 C42.465C23 ...
C2p.(C4○D8): C42.384D4 C42.451D4 C42.283D4 C42.285D4 C23.15D12 C23.10D20 C23.10D28 ...
C23.20D4 is a maximal quotient of
C24.69D4 C2.D8⋊4C4 C4.Q8⋊9C4 (C2×Q8).109D4 C24.89D4 (C2×C8).171D4 C4⋊C4.Q8
C23.D4p: C23.12D8 C23.15D12 C23.10D20 C23.10D28 ...
C4⋊C4.D2p: C24.71D4 C24.73D4 C4.68(C4×D4) C2.(C4×Q16) C24.85D4 C24.86D4 (C2×C8).24Q8 D6⋊C8.C2 ...
Matrix representation of C23.20D4 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 4 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 8 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 8 |
0 | 0 | 2 | 0 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[0,4,0,0,4,0,0,0,0,0,2,0,0,0,0,8],[0,1,0,0,1,0,0,0,0,0,0,2,0,0,8,0] >;
C23.20D4 in GAP, Magma, Sage, TeX
C_2^3._{20}D_4
% in TeX
G:=Group("C2^3.20D4");
// GroupNames label
G:=SmallGroup(64,166);
// by ID
G=gap.SmallGroup(64,166);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,199,362,50,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^4=e^2=c,d*a*d^-1=a*b=b*a,a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^3>;
// generators/relations
Export
Subgroup lattice of C23.20D4 in TeX
Character table of C23.20D4 in TeX